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V članku predstavimo primer obojestransko koristnega medsebojnega vpliva znanosti
in umetnosti: kot je klasična Evklidova geometrija pomagala pri razvoju linearne per-
spektive v slikarstvu renesanse, je linearna perspektiva utrla pot opisni in projektivni
geometriji. Perspektivo osvetlimo s teoretičnega, zgodovinskega, aplikativnega, učnega in
pedagoškega vidika.

A BRIEF HISTORY OF PERSPECTIVE AND ITS CONNECTIONS WITH
GEOMETRY

In this article, we present an example of the mutually beneficial interaction between
science and art: just as classical Euclidean geometry helped to develop linear perspective
in Renaissance painting, linear perspective paved the way for descriptive and projective
geometry. We shed light on the perspective from a theoretical, historical, applied, learning
and pedagogical point of view.

Kaj je perspektiva in čemu služi

Perspektiva (v nadaljnjem P) je način grafične reprezentacije objektov, s ka-
terim na sliki (papirju, platnu, zidu, računalnǐskem zaslonu itd.) pričaramo
kar se da prepričljivo “realistično iluzijo” prostorske globine (naslikanega
prizora v celoti ali posameznih objektov). Osnovni problem P:

Problem 1. Kako na sliki pričarati videz prostorske globine?

so umetniki različnih dob in kultur reševali na različne načine (na primer s
prikazovanjem daljnih objektov kot zakritih z bližnjimi, pa tudi z uporabo
toplih in hladnih barv ter različne ostrine upodabljanja bližnjih in oddaljenih
predmetov, pa z različnimi projekcijami na ravnino slike, paralelnimi in
neparalelnimi itd.) Zato obstaja več vrst P, ne le ena.

V bistvu istemu problemu – ki pa ga razume ožje, zgolj kot geometrijski
problem, in ga reformulira kot matematični problem korektne predstavitve
3D-objekta na 2D-ploskvi (s pomočjo tlorisa, narisa in stranskega risa) – se
na veliko bolj teoretičen način posveča tehnično risanje. Teoretična osnova
le-tega je opisna geometrija, za očeta katere velja francoski matematik Ga-
spard Monge (1746–1818); njene tehnike so pomembne tudi v inženirstvu,
arhitekturi in oblikovanju.
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Linearna perspektiva (v nadaljnjem LP) temelji na dodatni zahtevi:
Upodobljeni predmeti naj bodo prikazani tako, kot jih dejansko vidimo z do-
ločene zorne točke (na primer bolj ko so oddaljeni od opazovalca, manǰsi se
zdijo in bliže skupaj), ne pa naslikani v skladu s tem, kar o njih vemo (na
primer, da imajo vsi robovi kocke enako dolžino).

Tako na primer kocke ali kvadra v LP nikoli ne narǐsemo z vsemi tremi
četvericami vzporednih stranic, ampak kvečjemu z eno ali dvema, vsaj ena
četverica vzporednih stranic pa se steka k točki na horizontu – bežǐsču
(Slika 1).

Slika 1. Centralna P. Ena četverica vzporednih robov upodobljenega kvadra na sliki se
seka v bežǐsču, ki leži na horizontu.

Prav po tej večji skladnosti z “optično resnico” (na račun ohranitve pra-
vih razmerij dolžin upodobljenega objekta) se LP razlikuje od drugih nači-
nov predstavljanja 3D-objektov na ploskvi, na primer izometrične projekcije,
ki ohranja dolžine (v danem merilu) in vzporednost, in se zato uporablja v
tehničnem risanju. Upodabljanje v skladu z načeli LP je svojevrsten pa-
radoks, saj je po eni strani realistično, objektivno, ker ustreza temu, kar
opazovalec dejansko vidi (z določene zorne točke), po drugi strani pa je tudi
relativno, subjektivno, ker je odvisno od opazovalca — od kod gleda in v
kateri smeri.

Kratka zgodovina P

Preden natančneje pregledamo osnovne pojme in načela LP, ki so jih odkrili
v renesansi, si na kratko poglejmo, kako so osnovni problem P v zgodovini
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umetnosti reševali pred tem. Te rešitve niso bile določene samo z večjo
ali manǰso stopnjo tehničnih veščin, dostopnih v določenem času, ampak v
veliki meri tudi z načinom razmǐsljanja in kulturnimi značilnostmi posame-
znih dob ([3], str. 5). Obširen izčrpen pregled zgodovine P v povezavi z
geometrijo podaja na primer knjiga [2].

Za starogrškega filozofa Platona (428-348 pr. n. št.) tega problema sploh
ni bilo. Platon je kot idealist par excellence zavračal slikarstvo kot tako, češ
da prikazuje le videz, ne pa resničnost stvari, ki so tako ali tako že same
le nepopolni posnetki večnih idej. Slikarstvo naj bi bilo torej, ker ustvarja
le posnetke posnetkov, dvojno oddaljeno od resničnosti. Po njegovem bi
morali slikarji, če že, prikazovati stvari takšne, kot dejansko so, ne pa kot
se zdijo oziroma kot so videti. Trud za zvesto reprodukcijo videnega po
načelih v renesansi razvite LP bi bil po njegovem a priori nesmiseln. V
stareǰsih dobah in kulturah se, morda prav iz takšnih ali podobnih filozofskih
razlogov, niso posebej trudili s problemom upodabljanja prostorske globine
na ploskvi. Na starogrških vazah so na primer junake in bogove prikazovali
v neposredneǰsem likovnem jeziku.

V risbah iz časa 31.000 let pr. n. št., odkritih na stenah jame Chauvet-
Pont-d’Arc, so našli primere skupin živali (konjev), ki učinkovito zakrivajo
druga drugo in tako ustvarjajo občutek globine prizora.

Eden od stareǰsih načinov upodabljanja prostora je bila vertikalna P, pri
kateri so bili bolj oddaljeni predmeti narisani v vǐsjih vzporednih pasovih,
kar je omogočilo, da (vsaj na sliki) bližnji predmeti ne zakrivajo bolj odda-
ljenih (primer: Kmet orje polje ob reki, egipčansko slikarstvo, 13. stoletje
pr. n. št.).

V stari japonski umetnosti so pogosto prizori z ljudmi na ulici prostorsko
jasno in izrazno učinkovito prikazani kot videni iz zgornje galerije, vzpore-
dne linije prizora pa so na pravokotnih slikah upodobljene z vzporednimi
poševnimi črtami.

Kitajski umetniki so od 1. in 2. do 18. stoletja uporabljali podobno
poševno projekcijo, ki se sicer danes splošno uporablja pri tehničnem risanju.
Pri njej se, tako kot pri ortografski projekciji, za projiciranje predmeta na
ravnino slike uporabljajo vzporedni žarki, ki pa nanjo ne padajo pod pravim
kotom, ampak poševno (Slika 2).

Zametke LP najdemo že pri očetu geometrije, starogrškem matematiku
Evklidu iz Aleksandrije (365-275 pr. n. št.), čeprav si z njimi starogrški
slikarji niso znali ali niso hoteli pomagati. Evklid je v svoji Optiki [6] razvil
popolno teorijo o tem, kako vidimo. S konceptom zornega stožca je poja-
snil, zakaj imamo omejen zorni kot, zakaj se vzporedne premice v daljavi
navidezno sekajo, in zakaj so oddaljeni predmeti videti manǰsi. Narobe je
predpostavil le, da iz opazovalčevega očesa izhajajo nekakšni žarki; danes
vemo, da so to v resnici sončni žarki, ki se od predmetov odbijajo v oko.

Evklid je svojo Optiko zasnoval podobno kot Elemente, na aksiomatski
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Slika 2. Poševna perspektiva.

način. Tako je vse izreke v njej dokazal z logičnim sklepanjem iz osnovnih
postulatov, v katerih je predpostavil: 1. da se pravokotni žarki, ki izhajajo
iz očesa, razhajajo v nedogled; 2. da je telo, ki ga vsebuje niz vidnih žar-
kov, stožec, katerega vrh je v očesu, osnovna ploskev pa na površini vidnih
predmetov; 3. da se vidijo tiste stvari, na katere padajo vidni žarki, in da
se ne vidijo tiste stvari, na katere vidni žarki ne padajo; 4. da so stvari,
ki jih vidimo pod večjim kotom, videti večje, da so tiste, ki jih vidimo pod
manǰsim kotom, videti manǰse, da so tiste, ki jih vidimo pod enakim kotom,
videti enake; 5. da so stvari, ki jih vidijo vǐsji vidni žarki, videti vǐsje, stvari,
ki jih vidijo nǐzji vidni žarki, pa nǐzje; 6. podobno se stvari, ki jih vidimo z
žarki bolj desno, zdijo bolj desne, stvari, ki jih vidimo z žarki bolj levo, pa
bolj leve; 7. da so stvari, ki jih vidimo pod več koti, vidne jasneje.

Rimsko slikarstvo, kot neposredni naslednik starogrškega, že kaže šte-
vilne primere arhitekturnih prostorov, ki so prikazani s pomočjo bežǐsč in
predstavljajo dober, čeprav verjetno teoretično še ne zavestno domǐsljen,
približek LP perspektive. Vendar načelo, da se vse vzporednice sekajo v isti
točki, še ni usvojeno. Včasih vzporednice celo ostajajo vzporednice tudi na
sliki. V bizantinskem slikarstvu (iz obdobja po zatonu zahodno-rimskega
imperija v vzhodno-rimskem imperiju, ki je trajal do padca Konstantinopla
1453) najdemo na nekaterih ikonah primere nekakšne obratne perspektive,
pri kateri so bolj oddaljeni predmeti prikazani kot večji, vzporedne črte
pa se proti vrhu slike oddaljujejo namesto zbližujejo. V srednjem veku so
bili preǰsnji dosežki na področju P pozabljeni: naturalistično predstavljanje
resničnosti in iskanje fizične lepote in popolnosti nista bila več zanimiva.
Prostor je postal nekaj simboličnega in idealiziranega, naturalistično načelo
ene same zorne točke je bilo opuščeno ([3], str. 7).

Za konec srednjeveškega slikarstva in začetek renesančnega slikarstva
velja leto rojstva Giotta di Bondone (1266-1337). Načela LP so formulirali
italijanski umetniki in arhitekti, kot na primer Leon Battista Alberti (1404-
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1472), Filippo Brunelleschi (1377-1446), Piero della Francesca (1415-1492),
Paolo Uccello (1397-1475), Leonardo da Vinci (1452-1519). V začetku je
LP nastala iz želje, realistično prikazati na primer zunanjost in notranjost
stavb, pa tudi ceste in trge ter s kvadratno mrežo tlakovana tla. Z njo so
lahko tudi risali ljudi, drevesa in predmete v pravih velikostnih razmerjih.
Do renesanse človeških figur na isti sliki niso prikazovali različno velikih,
tudi če so bile bolj oddaljene od opazovalca. V renesansi se začne takšno
“skraǰsevanje”. Tako je na primer pri italijanskem slikarju Pietru Perughinu
(1450-1523) perspektivični prostor na freski Izročitev ključev (1481-82) že
usklajen z velikostjo figur. Prve takšne slike so bile narisane v enobežǐsčni
sredǐsčni perspektivi, na primer Sveta trojica (1425) italijanskega slikarja
Masaccia (1401-1428).

Pot do odkritja načel LP, ki so sama po sebi sicer enostavna in se
nam danes zdijo nekaj samoumevnega, ni bila ne lahka ne hitra. Duccio
di Buoninsegna (1278-1319) je že poskušal realistično prikazati prostor, a
je pri tem še delal napake, na primer pri svoji Zadnji večerji (1311) se
vzporednice še ne sekajo v eni sami točki, miza, ob kateri sedijo apostoli,
tudi ni postavljena v pravi LP. Brunelleschi se je na primer že zavedal, da
leži točka, na kateri se sekajo vzporednice, na horizontu, in da je poravnana
s točko, iz katere gleda opazovalec (Slika 1). Prǐsel je tudi do pomembnega
spoznanja, da LP predpostavlja, da opazovalec gleda s točno določene točke
z enim samim očesom, ki ga ne vrti sem in tja. To je pomenilo upoštevanje
dejstva, da človekovo videnje temelji na gledanju z očmi, in pomagalo k
poenotenju kompozicije.

Alberti je v delu De pictura (1435) pomembno prispeval k teoretičnim
osnovam za mehanično korektno reprodukcijo videnega prizora na sliki. Pre-
pričan je bil, da lahko slika zvesto posnema naravo le, če je prizor ugledan
z določenega mesta in če se upoštevajo skraǰsave oddaljenih objektov. Nje-
gova ideja zorne piramide je bila neposredna nadgradnja Evklidovih formu-
lacij. Utemeljena je bila na ideji, da se od opazovanega objekta svetlobni
žarki stekajo v opazovalčevo oko; če piramido teh žarkov presekamo z nav-
pičnim (na primer steklenim) zaslonom, se na njem pojavi slika, ki jo je
treba samo še zvesto prenesti na platno ali papir, in že dobimo natančen
duplikat videnega objekta (Slika 3 levo).

Nemški slikar in grafik Albrecht Dürer (1471-1528) je to idejo nadgradil
tako, da je zaslon opremil s kvadratno mrežo in tako dobil risalni okvir,
ki močno olaǰsa pravilno umestitev ključnih točk prizora na sliko (Slika 3
desno).

“Item Perspectiva ist ein lateinisch Wort, bedeutet ein Durchsehung.”
(“Izraz perspektiva je latinska beseda, pomeni gledati skozi.”) je zapisal.
Nekateri Dürerjevi lesorezi prikazujejo mehanizem, ki so ga uporabljali za
risanje prizorov v P. Umetnik gleda skozi luknjico, zato da se njegova zorna
točka med risanjem ne spreminja. Obrise modela gleda skozi prozoren nav-
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Slika 3. Zorna piramida z vrhom v opazovalčevem očesu in navpičnim zaslonom kot
osnovno ploskvijo, ter razdelitev tega zaslona s kvadratno mrežo.

pičen zaslon z narisano kvadratno mrežo. Tako zlahka prenese ustrezno sliko
na platno ali papir s podobno mrežo (v poljubno izbranem merilu). V raz-
pravi Underweyssung der Messung (1525) je Dürer opisal tudi dvobežǐsčno
perspektivo, ki jo je sicer prvi z diagramom prikazal Jean Pélérin v De Ar-
tificiali perspectiva (1505), prvi tiskani razpravi o P. Dürer je po svojem
potovanju v Italijo močno pripomogel k širjenju risanja v P v Nemčiji.

Leonardo se je v svojih zapisih o P naslonil na Albertijevo idejo ste-
klenega zaslona, na katerega površino rǐsemo objekte, vidne za njim. Isti
koncept je tudi v ideji camere obscure, ki je 1822 kulminirala v izumu fo-
tografije, ko je Francoz Nicéphore Niépce izumil prvo fotografsko tehniko,
heliografijo. Prav fotografija je umetnikom (v poznem 19. stoletju) odprla
oči tudi za tribežǐsčno perspektivo (Slika 4 desno).

Slika 4. Kocka v dvobežǐsčni in tribežǐsčni P

Sicer pa je Leonardo vztrajal, da mora umetnik zaupati predvsem svojim
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lastnim sposobnostim opazovanja, in se ne sme pustiti preveč voditi teori-
jam. Njegov največji prispevek k P pa so, poleg samih slik in fresk, kot je na
primer Zadnja večerja, ter risb poliedrov s praznimi lici in odebeljenimi ro-
bovi, ki jih je narisal kot ilustracije za razpravo De Divina proportione(1509)
italijanskega matematika Luce Paciolija (okoli 1445/47-1517), tudi njegove
raziskave o barvah predmetov glede na njihovo razdaljo od opazovalca. Opa-
zil je, da zaradi zraka, ki ni povsem prozoren, oddaljeni predmeti postanejo
bolj modri, njihovi obrisi pa postajajo vse bolj zabrisani.

Slikar Rafael Sanzio (1483-1520) je povezal nauke Leonarda ter kiparja
in arhitekta Michelangela Buonarottija (1475-1564) in ustvaril umetnǐska
dela z velikim občutkom za kompozicijo in pravilno uporabo perspektive,
na primer Atenska šola (1509-1511), ter tako proizvedel sintezo, ki najbolje
predstavlja visoko renesanso ([3], str. 9).

V naslednjih stoletjih so umetniki P vse bolj avtomatično uporabljali,
šteta je bila za logično obliko predstavitve. Izum fotografije je morda k temu
naziranju še dodatno pripomogel.

Vendar se je slikarstvo sčasoma izvilo iz tega “matematičnega” načina
upodabljanja prostora kot edino pravilnega. Ob koncu 19. stoletja so post-
impresionisti začeli z drugačnim upodabljanjem prostora, pod močnim vpli-
vom orientalske umetnosti, ki je takrat vzbudila veliko pozornost v Evropi.
Paul Gauguin (1848-1903) je slikal slike, pri katerih je prostor zaradi uporabe
barv deloval sploščeno. Vincent Van Gogh (1853-1890) je v svojih kompozi-
cijah izkrivljal prostor. Paul Cézanne (1839-1906) je naravne oblike izražal
z osnovnimi geometrijskimi oblikami: kroglo, valjem, stožcem. Vsi ti ume-
tniki so še vedno ohranjali osnovo P, medtem ko jo je umetnǐska avantgarda
v XX. stoletju pogosto opuščala. Danes se v slikarstvu P uporablja kot ena
izmed možnih tehnik, ni pa to več edini pravilni način slikanja.

LP so nekateri umetniki, na primer M.C. Escher (1898-1972) uporabili
tudi za prikaz različnih optičnih iluzij oz. nemogočih objektov, kot je na
primer stopnǐsče s kvadratnim tlorisom, po katerem se je mogoče ves čas
bodisi vzpenjati bodisi spuščati. Tipičen “nemogoč” objekt je tudi Penrosov
trikotnik, ki ga je sicer prvi ustvaril švedski umetnik Oscar Reutersvärd
1934, neodvisno od njega pa sta ga odkrila in popularizirala v petdesetih
letih psihiater Lionel Penrose in njegov sin matematik in Nobelov nagrajenec
Roger Penrose. Vendar je zanimivo, da je na primer možen 3D-trikotnik
z ukrivljenimi odebeljenimi robovi, ki je od spredaj videti kot Penrosov
trikotnik; odkril ga je Mathieu Hamaekers (prikazan je v knjigi [5], str.
72,93).

Slikarji in teoretiki so v XX. stoletju ([4]) razvili sisteme krivočrtne P s
štirimi, petimi in celo šestimi bežǐsči, ki v določenih primerih upodabljajo
videno bolje in natančneje kot LP. Vendar primere krivočrtne P najdemo
že veliko prej, na primer na odsevanih podobah v zrcalu s slavne slike The
Arnolfini Portrait (1434), ki jo je naslikal nizozemski slikar Jan Van Eyck
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(okoli 1390 - okoli 1441).
Omenimo še “otroško perspektivo”. Otrok, ki rǐse ulico s hǐsami ob njej,

marsikdaj narǐse sliko tako, kot jo doživi, in ne tako, kot jo vidi: ulica
je ves čas enako široka, hǐse pa so nanjo postavljene pravokotno. Tudi
ta način risanja ni povsem neuporaben: če na primer pogledamo parǐsko
zvezdo ulic okrog Slavoloka zmage visoko iz ptičje perspektive, bomo videli
12 ulic, katerih robovi se stekajo k različnim točkam na okroglem horizontu
oz. robu osnovne ploskve zornega stožca (Slika 5). Vzdolž njih bi res lahko
razporedili risbe hǐs, katerih navpičnice bi z robovi ulic oklepale prave kote.

Slika 5. Pogled iz ptičje P na parǐsko zvezdo okrog Slavoloka zmage: 12 ulic se steka k 12
bežǐsčem na okroglem horizontu.

Ob vsem tem se lahko spomnimo problema prikaza ukrivljene zemeljske
oble z zemljevidom. Znano je, da nobena od številnih možnih projekcij ne
ohranja vseh elementov (kotov in dolžin) ter ploščin takih, kot so dejansko.
Vsaka ima svoje prednosti in svoje pomanjkljivosti. Enako je z različnimi
sistemi P — nobeden izmed njih ni edino možen oziroma najbolǰsi v vseh
pogledih.

Od slikarjev so štafeto nadaljnjega razvijanja teorije P prevzeli matema-
tiki, ki so razvijali matematično teorijo P (na primer Guidobaldo, Stevin,
Lambert).

V teoriji LP so implicitno vsebovani osnovni pojmi in načela opisne
in projektivne geometrije (na projektivni ravnini se na primer vzporedne
premice iz evklidske ravnine sekajo v tako imenovani točki v neskončnosti,
prav tako kot se vzporedne premice v LP sekajo v bežǐsču). Vendar se zdi,
kot kaže material, zbran v [2], da slikarska teorija P ni neposredno vplivala
na matematični razvoj teh geometrij.

S pomočjo projektivne geometrije in teorije grup je Felix Klein (1849-
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1925) v svojem znanem Erlangenskem programu (1872) klasificiral večino
geometrij, znanih do konca 19. stoletja.

Tipičen izrek, ki sodi v projektivno geometrijo, je na primer znani Pap-
pusov izrek; na projektivni ravnini obstajajo tudi druge konfiguracije točk
in premic, ki so danes eno od intenzivno proučevanih področij geometrije
(glej na primer [8], [10]).

Projektivna geometrija omogoča elegantne dokaze oz. rešitve nekaterih
sicer težje dokazljivih izrekov oz. problemov evklidske geometrije. Tako se
na primer lastnost konkurentnosti (tri premice ali daljice se sekajo v isti
točki) ohranja pri projektivnih transformacijah; ker le-te omogočajo polju-
ben trikotnik preslikati na enakostranični trikotnik, so težǐsčnice v vsakem
trikotniku konkurentne, ker velja to za enakostraničen trikotnik. Podobno
sklepanje je v osnovi tako imenovanega trika X v LP, ki omogoča na primer
ob kvadrat, narisan v LP, narisati še enega, in to ponavljati v neskončnost
(Slika 6).

Slika 6. Trik X za dorisovanje kvadratov k prvotnemu kvadratu v pravilni perspektivični
skraǰsavi.

Osnovni pojmi in načela LP

Osnovni pojmi LP so: zorna točka, zorni stožec, osnovna ravnina, ravnina
slike, osnovna premica, zorna premica, horizont, bežǐsča, regulacijske črte
(Slika 7). Pri nadaljnji razlagi teh pojmov so dodani angleški izrazi in
njihove kratice, uveljavljeni v angleški literaturi o LP; v slovenski literaturi
nimamo povsem poenotenih standardnih izrazov za te pojme.

Ravnina slike (angl. picture plane, P.P.) je namǐsljena ravnina, na kateri
nastane slika kot navpični prerez zorne piramide. Ustreza slikarskemu pla-
tnu ali papirju. Zorna točka ali gledǐsče (angl. viewpoint, V.P.) je točka, s
katere opazovalec gleda; LP predpostavlja, da gleda z enim samim očesom,
za razliko od tako imenovane bicentrične P, ki je študija projekcije tridi-
menzionalnega prostora iz para referenčnih točk in ne iz ene same [7]. Zorni
stožec ali vizualni stožec (angl. cone of vision, C.V.) ustreza vidnemu polju,
ki ga zajame opazovalčev pogled. Vrh stožca je v opazovalčevem očesu. Tvo-
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Slika 7. Ravnina slike (navpična) je vselej pravokotna na zorno premico, ki poteka od
zorne točke do točke v fokusu na ravnini slike. Bežǐsči sta na črti horizonta.

rijo ga žarki svetlobe, ki potujejo od opazovanega objekta k očesu. Osnovna
ravnina (angl. ground plane, G.P.) je ravnina, na kateri stoji opazovalec in
upodobljeni predmeti. Osnovna premica (angl. ground line, G.L.) je presek
osnovne ravnine in ravnine slike. Zorna premica (angl. central visual ray,
C.V.R.) je premica od zorne točke do ravnine slike, pravokotna na ravnino
slike. Horizont ali črta obzorja (angl. horizon, H.) je namǐsljena vodoravna
črta na vǐsini opazovalčevih oči. Bežǐsča ali očǐsča (angl. vanishing points,
V.P.) so točke na horizontu, v katerih se srečajo vzporedne premice, ki se
oddaljujejo od opazovalca. Glede na tip perspektive ločimo enobežǐsčne,
dvobežǐsčne in tribežǐsčne (te se uporabljajo bodisi za pogled iz ptičje bo-
disi iz žabje perspektive). Regulacijske črte nam pomagajo pri risanju v P
(na primer stopnic, telegrafskih drogov v ravni vrsti itd.).

Čeprav so osnovna načela LP, kot so; zmanǰsanje, skraǰsevanje, kon-
vergenca, prekrivanje, barvna in vrednostna perspektiva, perspektiva po-
drobnosti in vzorcev, učinek ostrenja (angl. diminution, foreshortening,
convergence, overlapping, color and value perspective, detail and pattern
perspective, focus effect) razmeroma preprosta (glej na primer [1]), je treba
za učenje njenih konkretnih tehnik in postopkov (kot so na primer risanje
n-kotnǐskih pravilnih prizem, risanje stopnic, senc in zrcalnih odsevov; ri-
sanje objekta v LP v pravih razmerjih na podlagi njegovega tlorisa, narisa
in stranskega risa itd.) vložiti kar nekaj truda. To temeljno znanje, potem
ko ga z veliko študija, vaje, opazovanja in razmǐsljanja, dobro osvojimo,
nam omogoča, da korektno rešimo praktično vsak problem LP oz. opisne
geometrije. To je dobro storiti tudi v primeru, da se kasneje poslužujemo ka-
kšnega računalnǐskega ali spletnega orodja za risanje v takšni ali drugačni P
oz. projekciji (linearni, paralelni, vojaški itd.), kot ga uporabljajo na primer
arhitekti, inženirji, dizajnerji, pa tudi umetniki.
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Učenje LP: kako začeti

LP danes poleg ilustratorjev, animatorjev in slikarjev (ki jo uporabljajo kot
eno od možnih orodij, včasih pa njena načela tudi zavestno kršijo oziroma
ignorirajo), s pridom uporabljajo tudi arhitekti, scenografi in oblikovalci no-
tranjih prostorov ter inženirski oblikovalci. Poznavanje njenih načel (teorija)
in sposobnost njihove uporabe (praksa) ne škodi tudi matematiku, ki želi na
primer učencem z realistično risbo prikazati preprosta geometrijska telesa
(na primer kocko v perspektivi), ali jim pokazati, da so tudi osnovne oblike
v naravi (cvetovi, plodovi, oblike živali itd.) sestavljene iz osnovnih oblik
(krogov, elips, valjev itd.), ki jih z malce poznavanja geometrije in malce
poznavanja perspektive zlahka narǐsemo precej realistično. Pri risanju v LP
(bodisi prostoročnem bodisi z ravnilom ali s kakšnim računalnǐskim orod-
jem) moramo pozabiti, kar vemo o objektu, ki ga rǐsemo, in risati tisto,
kar vidimo. Tako se na primer zdi, da se vzporedna robova ravne ceste ali
železnǐskega tira v daljavi srečata v točki, čeprav vemo, da je razdalja med
njima ves čas enaka.

Vendar je, ker so LP razvili umetniki, nima pa vsakdo umetnǐskega
talenta, umestno vprašanje: Se lahko vsakdo nauči risati (vsaj razmeroma
preproste geometrijske objekte, kot so na primer kocke, kvadri, poliedri) po
načelih LP?

Če nimamo posluha, se zelo težko naučimo zapeti pravilne vǐsine tonov.
Vseeno pa lahko, če imamo smisel vsaj za ritem in smo se pripravljeni na-
učiti glasbene pisave, z dovolj vaje in truda igramo preproste skladbe na
inštrumentih s tipkami, na primer na klavir. Dejansko se lahko osnovnih
načel LP, ki je bolj tehnika kot umetnost, teoretično naučimo razmeroma
hitro. Še posebej lahko se jih naučimo matematiki (in fiziki), saj je sama
teorija izrazito matematična (temelji namreč na optiki oziroma geometriji).
Podobno velja tudi za praktično učenje: tudi če nimamo posebnega talenta
in risarsko nismo najbolj spretni (na primer ne znamo prostoročno narisati
lepe elipse), lahko vseeno rǐsemo v LP, tako da si pomagamo na primer z
GeoGebro. Na ta način se lahko tudi lažje naučimo samih osnov teorije LP.

Najhitreje se naučimo LP, če preštudiramo čim več različnih knjig o tej
temi, ki jo osvetljujejo iz različnih vidikov:

1. praksa, risanje: Začnemo lahko na primer s preprostim priročnikom
za risanje v P z malo teorije, a veliko praktičnimi vajami, na primer [1].
Obǐsčemo lahko tečaj risanja.

2. opazovanje, razmǐsljanje: V knjigah o umetnosti ali na spletu po-
ǐsčemo in pozorno opazujemo čim več klasičnih slik na to temo. Preberemo
ustrezne komentarje in razlage teh del. Ogledamo si videe o risanju v P na
spletu.

3. teorija, znanje: Potem lahko posežemo po bolj teoretičnih delih o
matematičnih osnovah LP (bodisi zgodovinskih, kot je na primer Evklidova
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Optika [6], bodisi iz sodobnosti), o optičnih iluzijah [5], o krivočrtni P [4],
itd.

4. uporaba računalnǐskih orodij : Na spletu se zlahka dobijo prosto do-
stopna orodja za risanje v LP. Na voljo pa so tudi plačljive profesionalne
verzije, uporabne predvsem za arhitekte, dizajnerje in inženirje, pa tudi za
likovne umetnike, risarje stripov in animiranih filmov.

Za popoln uspeh v obvladovanju veščine risanja v P ni dovolj samo ra-
zumeti načela P, treba je tudi veliko, vztrajno in potrpežljivo risati oziroma
vaditi, razmǐsljati, opazovati in se učiti. Le tako ne bomo osvojili le nekaj
posebnih tehnik za risanje zgolj določenih vrst objektov (na primer stopnic,
vzorcev na preprogi itd.), ampak bomo sposobni rešiti vsak risarski problem,
ki se nanaša na perspektivo.

Učenje P neizogibno poteka v korakih, skozi različne stopnje. Na osnovni
ravni zadošča, če spoznamo nekaj osnovnih pojmov in načel iz priročnikov za
risanje. V njih dobimo zelo praktična in konkretna navodila za risarske vaje.
Sčasoma se začnemo spraševati, kako so sploh odkrili ta pravila, in kako
so teoretično utemeljena. Zaznamo namreč določeno nelagodje ob njihovi
uporabi. Pojavi se dvom, ali so ta pravila stoprocentno uporabna v vseh
primerih.

Nato začnemo študirati zgodovino P. Presenečeni odkrijemo njen sim-
bolični pomen in spoznamo, da pojem prostora ni bil vselej tako “matema-
tičen”, kot si ga zamǐsljamo že nekako od Newtona dalje (homogen, konti-
nuiran, neskončen); ni bil vselej razumljen kot absolutni prostor, ki obstaja
pred vsemi predmeti. V knjigi Perspektiva kot simbolična oblika [9], osrednji
knjigi 20. stoletja o P, ki je znana tudi zunaj krogov umetnostne zgodovine,
član warburške skupine Erwin Panofsky očrtuje obravnavanje P od klasič-
nih časov do danes in povezuje uravnavanje prostora z značilnim svetovnim
nazorom določenega časa.

Konkretne metode, triki in postopki za risanje v LP

Pri učenju risanja v LP po navadi začnemo z risanjem kocke ali kvadra
ali pravilnih prizem, kar nam potem pride prav pri metodi škatle (angl.
box method), s katero lahko potem zlahka narǐsemo predmete drugih, manj
pravilnih oblik, umeščenih v te škatle. Podobno uporabni so osnovni geo-
metrijski objekti, kot so krogle, valji, stožci in piramide, ki nam pri risanju
služijo za razstavitev zapletene oblike na preprosteǰse.

V LP se oddaljeni krogi spremenijo v vse bolj sploščene elipse, pri čemer
pa sredǐsče upodobljenega kroga, ki sovpada s presečǐsčem diagonal krogu
očrtanega kvadrata, ne leži na presečǐsču osi ustrezne elipse, ampak malo
dlje, bliže horizontu.

V LP moramo znati risati tudi sence ter osenčene strani predmetov
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(angl. shadows and shades), pri čemer sončne žarke obravnavamo kot vzpo-
redne, žarke svetlobe iz svetilk pa kot radialno izvirajoče iz določene točke.
Posebna, dokaj zahtevna tema so tudi zrcaljenja predmetov v vodi in zr-
calu (glej na primer [11]). Poleg splošnih načel je treba za uspešno risanje
v LP osvojiti še nekaj posebnih postopkov, s katerimi narǐsemo določene
zahtevneǰse objekte, na primer stopnice, preproge, šahovnice, ograje.

Pri risanju si lahko pomagamo s kvadratnimi koordinatnimi mrežami,
ki jih lahko uporabimo na primer za transformacijo zemljevida, izvorno na-
risanega v LP, v prizor, narisan v kakšni drugi P (paralelni, obratni itd.).
Če smo kvadratno koordinatno mrežo narisali na primer z GeoGebro, po-
tem lahko to transformacijo koordinatne mreže in vseh točk in črt vanjo
vrisanega zemljevida naenkrat izpeljemo že s spremembo prosto gibljivih
točk enega samega kvadrata, in že se vsa mreža in slika na njej avtomatično
transformira v želeno P (Slika 8).

Slika 8. Konstrukcija kvadratne mreže iz osnovnega kvadrata.

Koristno je znati tudi narisati daljico (na ravnini tal) v pravilni P, saj
lahko potem vsakršno risbo na kvadratni mreži (na primer tlorise stavb
nekega naselja) sestavimo iz daljic in narǐsemo v pravilni P.

Merjenja dolžin navpičnih in vodoravnih črt in pomembnost vǐsine
horizonta.

S pomočjo znane vǐsine horizonta (na primer h = 1, 75m) lahko določimo
vǐsino navpičnih in dolžino vodoravnih črt na sliki, narisanih v LP. Tako
so na primer vsi ljudje, ki imajo vrh glave v vǐsini horizonta, enako visoki.
Drevo, ki ima eno petino debla pod horizontom, štiri petine pa nad njim,
ima dolžino 5h. Če je dolžina vodoravne črte m-kratnik njene razdalje od
horizonta, je njena dolžina mh.

Spreminjanje vǐsine horizonta vpliva na razmerja vǐsin. Dve enako veliki
osebi, ki stojita druga za drugo, določata dve vzporednici, ki se bosta na
sliki sekali v nekem bežǐsču na horizontu. Vse navpičnice med tema dvema
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črtama imajo enako dolžino (podobno kot pri telegrafskih drogovih). Če pa
horizont znižamo, se bo druga oseba zdela vǐsja od prve. Izčrpneje to razloži
naslednji citat iz knjige ([12]): “V slikarstvu je bil dolgo priljubljen visok
horizont, zlasti v 16. stoletju, ko pokrajina še ni bila samostojna slikarjeva
tema, ampak le ozadje za upodabljanje cerkvenih praznikov, bitk ali biblij-
skih prizorov. Visok horizont je slikarju puščal dovolj prostora, da je dal
duška svojemu umetnǐskemu navdihu. Po tem je najbolj znan slikar Pieter
Brueghel stareǰsi (okoli 1525-1569). Slikarji so se lahko zadovoljili z nizkim
horizontom šele, ko se je spremenil stil risanja pokrajin in so začeli risati na
primer tudi oblake. O tem govorijo slike, ki so nastale okrog 1600.”

LP pomaga predvsem pri risanju objektov z ravnimi vzporednimi čr-
tami, čeprav je tudi risanje zahtevneǰsih poliedrov po njenih zakonih zaple-
tena naloga – pomislimo samo na polieder iz Dürerjeve grafike Melanholija
(1514). Za risanje organskih oblik iz narave (cvetov, dreves, oblakov itd.)
pa je še vedno bolj kot teorija in sestavljanje zapletenih oblik iz prepro-
stih geometrijskih oblik (krogle, valja, stožca, lijaka itd.) ključno natančno
opazovanje, kot ga je priporočal Leonardo.

P glede na število bežǐsč

Kakšno vrsto P in s koliko bežǐsči uporabiti za risanje danega objekta? To je
odvisno od njegove lege glede na opazovalca ter na ravnino slike in horizont.

Najpreprosteǰsi je primer, ko gleda opazovalec naravnost predse (kot
bi gledal skozi režo v steni), in ne vrti svojega pogleda zdaj levo, zdaj
desno, zdaj navzgor zdaj navzdol. Temu načinu risanja pravimo centralna P.
Primerna je za prikaz zgradbe, ki ima sprednjo stran vzporedno ravnini slike.
Podalǰsane črte vzporednih premic, ki bežijo od nas, se na sliki sekajo v isti
točki. Pravimo jim bežǐsče (angl. vanishing point). Bežǐsče pri centralni P
natančno ustreza preseku zorne premice (ki izhaja iz opazovalčevega očesa)
in ravnine slike. Bežǐsče (eno samo) je pri centralni P nekje na sliki. Po
navadi ga ne umestimo povsem v sredǐsče slike. S tem dosežemo, da je slika
bolj razgibana (sicer je preveč statična). Centralno P je na primer uporabil
Piero della Francesca na sliki Bičanje Kristusa, nastali v letih 1455–1460.
S centralno P lahko narǐsemo le tiste prostore, ki se razprostirajo v smeri
pogleda, objekti v prostoru pa so postavljeni tako, da smer pogleda sekajo
pod pravim kotom.

Če pa pogledamo na objekt (na primer zgradbo z osnovno obliko kvadra)
od strani, dobimo dve skupini vzporednih črt in vsaka se seka v svojem
bežǐsču. To je P z dvema bežǐsčema. Lahko jo uporabimo tudi za tlakovanje
tal sobe ali trga s kvadrati. Pri vijugasti poti, ki se oddaljuje od nas, imamo
lahko celo več bežǐsč. Vsa bežǐsča ležijo na isti vodoravni črti, ki ji pravimo
horizont. Na obali morja horizont ustreza črti med morjem in nebom. Pri
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ravni pokrajini ustreza črti med zemljo in nebom.
Risbe s tremi bežǐsči dobimo na primer, če rǐsemo nebotičnik, ki ga

gledamo od spodaj (iz žabje perspektive) ali od zgoraj (iz ptičje P). Če bi
gledali nebotičnik pred seboj iz sredine nekega drugega nebotičnika, bi nam
pogled taval zdaj gor, zdaj dol, zdaj levo, zdaj desno, in bi imeli zato na sliki
kar štiri očǐsča, ustrezajoča temu nebotičniku, katerega navpične robove bi
videli kot rahlo ukrivljene oz. kot krožne loke. Ta primer jasno kaže, da
ima uporaba LP svoje meje.

Meje uporabnosti LP

Načela LP so odkrili umetniki v renesansi, dobi, ki je po zgledu antike po-
udarjala vrednost človeka in je poleg humanistične izobrazbe enako cenila
tudi natančno opazovanje narave. Nastala je iz potrebe rešiti “nemogoč”
problem, porojen tako iz same slikarske prakse kot tudi iz duhovnih in filo-
zofskih razmǐsljanj tistega časa:

Problem 2. Kako upodobiti izbrani prostor ali objekt, da bo slika natančen
odraz tega, kar dejansko vidimo z določene zorne točke?

Takšna “idealno realistična” upodobitev “optične resnice” objekta naj bi
zvesto prikazala objekte v prostoru in njihovo medsebojno lego, upoštevala
pa naj bi tudi navidezne skraǰsave objektov zaradi njihove oddaljenosti od
opazovalca. Toda, ali je sploh mogoče na ravni sliki natančno prikazati, kar
vidimo z očesom (oziroma z lečo sferične oblike)? Ta problem spominja na
podobno“nemogoče” probleme (v matematiki in drugod), pri katerih se mo-
ramo zadovoljiti z najbolǰsimi približki rešitev, ker rešitve v strogem smislu
ni. Tako na primer v kartografiji poskušamo z različnimi kartografskimi pro-
jekcijami na ravnino, stožec ali valj prikazati razporeditev celin in oceanov
po ukrivljeni zemeljski obli. Pri tem prevodu se vedno nekaj izgubi: ali koti,
ali dolžine, ali ploščine. Najstareǰso projekcijo zemeljske oble, gnomonsko
projekcijo iz sredǐsča sfere na katerokoli tangentno ravnino, je iznašel Tales
v 6. st. pr. n. št. Pri njej so veliki krogelni krogi (na primer skozi pola)
prikazani z ravnimi črtami (poltraki, izhajajočimi iz skupne točke).

Podobno, v linearni algebri (z metodo najmanǰsih kvadratov) ǐsčemo
najbolǰsi približek rešitve matrične enačbe Ax = b predoločenega sistema
linearnih enačb, v katerem je več enačb kot spremenljivk, in zato na splošno
nima eksaktne rešitve.

In še en primer “nemogočega” problema, ki pa je vseeno dobil rešitev:
Nek arhitekt je dobil nalogo na kvadratnem trgu z elipsastim parkom v
sredini projektirati najbolǰso možno vmesno sprehajalno pot, katere oblika
naj bi predstavljala najbolǰsi možni kompromis med ravno in ukrivljeno
obliko obeh mejnih površin; kompromisno rešitev je poiskal kot geometrijsko
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mesto razpolovǐsč daljic, ležečih na radialnih žarkih iz sredǐsča kvadrata, z
enim krajǐsčem na elipsi in drugim na kvadratu (Slika 9):

Slika 9. “Elipsasti kvadrat” – najbolǰsa srednja pot med elipso in kvadratom; ni ne elipsa
ne lomljenka, ampak je neka analitično težje izrazljiva sklenjena krivulja.

LP naj bi bila, po definiciji, rešitev Problema 2. Vendar, ali to tudi dejansko
je? Matematiki vemo, da je mogoče definirati tudi stvari, ki jih ni, kot na
primer okrogel kvadrat, ali pa množico vseh množic. Zato je na mestu
vprašanje:

Ali je LP dejansko natan£na reprodukcija tistega, kar vidimo z dolo£ene
zorne to£ke? Kaj £e je tudi LP le pribliºek re²itve v bistvu nere²ljivega
problema? Se da to, kar vidimo, dejansko popolnoma zvesto preslikati na
ravnino slike, ali pa se moramo (kot v primeru tak²ne ali druga£ne projekcije
globusa na ravno ploskev) zadovoljiti le z dolo£enim pribliºkom re²itve?
Ali LP res omogo£a, kar od nje pri£akujemo (tj. natan£no upodabljanje
videnega), ali pa v dolo£enih primerih odpove? Ali so moºni kak²ni druga£ni
sistemi upodabljanja 3D-prizorov na 2D-ploskvi, ki ²e bolje ustrezajo temu,
kar dejansko vidimo pred seboj?

Da ta vprašanja niso iz trte izvita, lepo kaže naslednji primer oz. miselni
poskus: Ali vzporednice opazovanega prizora v smeri levo-desno res vselej
vidimo kot vzporedne črte, kot to predpostavlja teorija LP? Če se na primer
postavite naravnost pred visok in zelo dolg blok z ravno streho, ki na levi in
desni ubeži vašemu pogledu, ali je obris strehe bolj podoben grafu funkcije
f(x) = |1− x| ali krožnemu loku g(x) = 1

10(1− x)2?
LP izhaja iz predpostavke, da opazovalec gleda prizor iz ene same zorne

točke in z enim samim očesom. To je vsekakor poenostavljen model re-
sničnega gledanja. V resnici je naše videnje in občutek prostorske globine
rezultat dveh različnih slik, ki prihajata v dvoje očes in ki ju procesirajo
naši možgani oziroma um. Tega ni mogoče reproducirati na nobeni sliki.
Videnje ni le mehanični akt zaznavanja, podvržen zgolj zakonom optike in
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geometrije, ampak je v njem vselej prisotna tudi intenzivna miselna dejav-
nost (glej 2. poglavje: Vision as data-processing, str. 11-20 v [5]). Videnje je
vselej tesno povezano z mǐsljenjem in interpretacijo videnega. Dva človeka
lahko gledata isto, pa ne vidita istega.

S tem se še nekako lahko sprijaznimo. Naslednje vprašanje, ki ga je treba
zastaviti, in so ga številni dejansko tudi zastavili, pa je: Ali je LP vsaj ge-
ometrijsko oziroma optično povsem korektna? Spomnimo se, da s pomočjo
horizonta in regulacijskih črt lahko natančno določimo dolžine navpičnih (in
horizontalnih) črt na sliki, narisanih v LP. Nekateri LP celo definirajo kot
sredstvo za določanje razmerij med velikostmi objektov na različnih položa-
jih v prostoru. Pa je to sredstvo dejansko matematično povsem korektno?
Ali z njegovo pomočjo vselej dobimo pravilne rezultate? Ni nobenih sistem-
skih odstopanj od pravih vrednosti?

Evklidov osmi izrek iz njegove Optike jasno pove, da zaznana velikost
predmeta ni povezana z njegovo oddaljenostjo od očesa s preprostim raz-
merjem. Navidezna razlika v velikosti med dvema enakima objektoma, za-
znanima na različnih razdaljah, ni določena z razmerjem teh razdalj, ampak
z razmerjem ustreznih kotov, pod katerima vidimo predmeta. Če rene-
sansa ne bi zamolčala tega Evklidovega spoznanja, bi morala priznati, da je
ustvarjanje povsem zveste perspektivne slike nemogoče delo, saj sfere ni mo-
goče zravnati v ravnino ([9]). Evklidova “perspectiva naturalis” je skušala
formulirati zakone naravnega videnja, utemeljene na optiki. Renesančna
“perspektiva artificialis” postulira načela, kako naj rǐsemo, da bomo lahko
računali razmerja velikosti predmetov (zavedajoč se kvantitativne napake,
izvirajoče iz dejstva, da enakim kotom ne ustrezajo enake projekcije ustre-
znih lokov na ravnino slike).

Ali ravne črte v naravi res vidimo kot povsem ravne? Tudi to ni vselej
res. O tem se lahko prepričamo, če razmislimo, kako bi bil videti zelo visok
nebotičnik, ki bi ga gledali iz nasprotnega nebotičnika nekje v vǐsini sredine
prvega. Nikjer ne bi videli zlomljenih linij. Če bi slikarji hoteli zvesteje
risati, kar vidimo, bi torej (vsaj pri risanju zelo razsežnih objektov) morali
risati premice kot ukrivljene črte. Paradoks, da so lahko ravne črte videti
kot ukrivljene, in da ukrivljene črte lahko vidimo kot ravne, je bil v antiki
dobro znan.

V učbenikih LP, katerih avtorji se zavedajo omejitev LP, najdemo opo-
zorila, da naj rǐsemo le predmete znotraj zornega kota 30 + 30 stopinj levo
in desno od zorne premice, saj so sicer onstran tega zornega kota, če strogo
upoštevamo pravila LP, izkrivljanja od dejansko videnega prevelika. To
pravilo si velja zapomniti.
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Krivočrtna P

Primer risanja nebotičnika (omenjen na koncu predpreǰsnjega razdelka) de-
jansko presega domet LP. Bolje ga naslavlja krivočrtna (tudi: ukrivljena,
krivuljna) P (angl. curvilinear perspective), iznajdena v šestdesetih letih
20. stoletja ([4]), pri kateri se premice prizora ne preslikujejo v premice na
sliki, ampak bolj na nekakšno krivočrtno mrežo. Tako imamo na primer pri
krivočrtni petbežǐsčni perspektivi bežǐsča v sredǐsču kroga oz. sfere ter v
severnem in južnem polu ter točki na vzhodu in zahodu (Slika 10).

Slika 10. P s petimi bežǐsči.

Obstaja tudi krivočrtna perspektiva s 6 bežǐsči oziroma tremi pari točk, v
katerih se stekajo krivulje: zgoraj-spodaj, sever-jug, vzhod-zahod. Navadno
so le tri od njih (na primer sever, vzhod in spodaj) znotraj kroga, ki ustreza
horizontu oziroma obodu zornega stožca (Slika 11). Uporabimo jo lahko na
primer za sliko kocke s tremi četvericami ukrivljenih stranic; vsaka četverica
je naslikana s krožnimi loki med pari bežǐsč sever-jug, vzhod-zahod in zgoraj-
spodaj. S tem smo tudi (še enkrat) odgovorili negativno na vprašanje, ali
je LP res sposobna vselej prikazati zvesto sliko videnega; včasih to nalogo
bolje opravi krivočrtna P.

Linearna perspektiva in dinamična geometrija

Pri učenju linearne perspektive si lahko pomagamo s sodobnimi računalni-
škimi orodji dinamične geometrije (na primer GeoGebra, Cinderella itd.), ki
so danes že prosto dostopna na spletu. Po drugi strani pa na ta način tem
orodjem damo neko konkretno smiselno uporabo. Perspektivo lahko upo-
rabimo kot dovolj privlačno temo, da se bodo učenci in dijaki raje naučili
uporabljati ta orodja. Najprej jim povemo tole:

Točke A,B,C, . . . v dinamičnih konstrukcijah so proste, pol-vezane (na
neko premico p), kar označimo na primer takole: A ∈ p, ali pa leže v preseku
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sever vzhod

spodaj

zgoraj

jug

zahod

Slika 11. Krivočrtna P s tremi pari bežǐsč.

dveh premic p in q, kar označimo na primer takole: A = p ∧ q. Premice
p, q, r . . . v dinamičnih konstrukcijah so prav tako lahko proste, polvezane
(gredo skozi neko točko A, kar zapǐsemo kot: A ∈ p, ali pa so povsem
določene z že konstruiranimi točkami in premicami): če je p določena z
dvema točkama A in B, to zapǐsemo takole: p = A∨B, če je p pravokotnica
na premico q in gre skozi točko A, to pǐsemo kot: p⊥q, A ∈ p; če je p
vzporednica k premici q in gre skozi točko A, pǐsemo: p∥q;A ∈ p.

Zdaj jim lahko v razredu damo naloge na primer naslednjega tipa:

Naloga 1. Na navpični osi y pravokotnega koordinatnega sistema izberi delno
vezano točko H, skoznjo postavi vzporednico h (horizont) k osi x. Na njej
izberi dve delno prosti točki – bežǐsči B1 in B2. Izberi še tri delno vezane
točke X1, X2, X3 na osi x in dve delno vezani točki Y 1, Y 2 na osi y (Slika
12). Zdaj lahko določǐs položaje vseh ostalih točk kocke. Opazuj, kako se
slika spreminja, če spreminjaš položaj točke H in s tem vǐsino horizonta,
ali medsebojno razdaljo bežǐsč B1 in B2 na horizontu, ali položaje zelenih
točk na oseh.
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H B1 B2

Y 1

X1 X2 X3

Y 2

Slika 12: Spreminjanje položaja pol-vezanih točk na oseh ali bežǐsč na
horizontu spreminja obliko kocke, ki pa ves čas ostaja narisana v

dvobežǐsčni P.

Bralci bodo po zgornjem zgledu zagotovo zlahka sami razvili še druge
primere uporabe dinamične geometrije pri učenju LP, ki se z malo znanja
GeoGebre lahko močno približajo prepričljivim in uporabnim dinamičnim
perspektivnim prikazom hǐs, trgov, ulic, kvadratnih tlakovanj, stopnic ter
drugih objektov in prizorov.
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[4] André Barre and Albert Flocon, La Perspective curviligne, Flammarion, Éditeur
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NOBELOVA NAGRADA ZA FIZIKO 2025
JOHN CLARKE, MICHEL DEVORET, JOHN MARTINIS
ZA ODKRITJE MAKROSKOPSKEGA KVANTNEGA
TUNELIRANJA IN KVANTIZACIJE NIVOJEV V

ELEKTRONSKEM VEZJU

ROK ŽITKO1

1Institut �Jožef Stefan�

Ključne besede: makroskopsko kvantno tuneliranje, Josephsonovi spoji, superprevodna

kvantna elektronika

Nobelova nagrada za fiziko je bila leta 2025 podeljena J. Clarku, M. Devoretu in
J. Martinisu za prvi zares prepričljiv eksperimentalni dokaz, da se makroskopske spre-
menljivke lahko obnašajo kvantno. Ključni del eksperimentalne postavitve je bila super-
prevodna naprava z Josephsonovim spojem. S tem eksperimentom so postavili temelje
superprevodne kvantne elektronike za temeljne raziskave in aplikacije, med drugim za
ustvarjanje makroskopskih koherentnih stanj (Schrödingerjeva mačka) in za kvantne ra-
čunalnike.

NOBEL PRIZE IN PHYSICS 2025
JOHN CLARKE, MICHEL DEVORET, JOHN MARTINIS

FOR THE DISCOVERY OF MACROSCOPIC QUANTUM MECHANICAL
TUNNELING AND ENERGY QUANTISATION IN AN ELECTRIC CIRCUIT

The Nobel Prize in Physics in 2025 was awarded to J. Clarke, M. Devoret, and J. Mar-
tinis for providing the first truly convincing experimental evidence that macroscopic va-
riables can exhibit quantum behavior. A key component of the experimental setup was
a superconducting device with a Josephson junction. This experiment laid the founda-
tions of superconducting quantum electronics for fundamental research and applications,
including the creation of macroscopic coherent states (Schrödinger’s cat) and quantum
computers.

1. Meja med klasičnim in kvantnim svetom

V vsakdanjem življenju se nam zdi opis v okviru klasične fizike povsem za-
dosten, kvantno mehaniko pa obravnavamo kot orodje, ki je zares potrebno
zgolj za opis pojavov na mikroskopski velikostni skali. Zavedamo se sicer, da
številnih pojavov ne moremo pojasniti v okviru klasične fizike, vendar se te
podrobnosti običajno skrivajo v specifičnih snovnih konstantah v konstitu-
tivnih zvezah, medtem ko imajo dinamične enačbe za opis pojavov na ma-
kroskopski skali obliko, ki je značilna za klasično fiziko. Kvantna mehanika
se dejansko manifestira na makroskopski skali skozi pojave, kot so super-
fluidnost in superprevodnost, vendar lahko tudi v teh primerih uporabimo
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fenomenološki opis, ki je klasičen. Primer je Landau-Ginzburgova teorija
superprevodnosti, v kateri kot spremenljivka nastopa parameter reda Ψ, ki
ima kompleksno vrednost in ki ga pogosto imenujemo tudi �makroskopska
valovna funkcija�, vseeno pa imajo enačbe obliko klasične teorije polja, v
kateri časovna odvisnost opisuje vračanje v termodinamsko ravnovesje z di-
fuzijo in ne more opisati kvantne dinamike. Gre za kolektivne pojave, pri
katerih imamo veliko število mikroskopsko koherentnih gradnikov, kar lahko
(zelo shematsko) opǐsemo kot valovno funkcijo tipa

Ψ(x1,x2, . . . , xN ) ∝[
ΨL(x1) + ΨD(x1)

][
ΨL(x2) + ΨD(x2)

]
· · ·

[
ΨL(xN ) + ΨD(xN )

]
,
(1)

torej kot produktno stanje velikega števila lokalnih superpozicij stanj ΨL in
ΨD (�levo� in �desno� stanje).

Še pomembneǰse vprašanje pa je, ali obstajajo primeri, ko lahko ma-
kroskopsko velik sistem opǐsemo z eno samo spremenljivko in se ta spre-
menljivka obnaša kvantno. Opravka imamo torej s situacijo, ki je analogna
metafori Schrödingerjeve mačke in ki jo lahko shematsko opǐsemo z valovno
funkcijo tipa

Ψ(x1, x2, . . . , xN ) ∝ ΨL(x1)ΨL(x2) · · ·ΨL(xN )+ΨD(x1)ΨD(x2) · · ·ΨD(xN ),
(2)

torej kvantno prepleteno superpozicijo makroskopsko ločljivih stanj. Takšna
stanja pogosto imenujemo kar mačja stanja.

S tem vprašanjem se je konec 70. in v zgodnjih 80. letih intenzivno
ukvarjal Anthony Leggett (kasneǰsi dobitnik Nobelove nagrade za razlago
superfluidnosti v tekočem heliju 3He). Fizikalna skupnost je bila tedaj do-
kaj zadržana. Po eni strani se jim je zdelo ukvarjanje z makroskopskimi
manifestacijami kvantne mehanike nepotrebno, saj naj bi bil že obstoj su-
perprevodnosti, laserjev in podobnih sistemov zadosten dokaz. Po drugi
strani pa se jim je zdelo ukvarjanje s Schrödingerjevimi mačkami brezupno,
ker je v makroskopsko velikih telesih razmik med sosednjimi kvantnimi ni-
voji tako majhen, da bi že premik enega samega elektrona daleč proč od
telesa zaradi Coulombove interakcije predstavljal velikanski vpliv in tako
povzročil dekoherenco. Leggett je na prvi očitek odgovarjal, da gre za ne-
primerljiva primera, na drugega pa, da je to zmotno prepričanje, ker je vpliv
oddaljenega elektrona na sosednje nivoje lahko enak, in da se je tega pro-
blema treba lotiti bolj resno. Z oddaljenim elektronom se namreč sklaplja le
nekaj kolektivnih operatorjev, recimo operator za celotni naboj, magnetni
pretok ipd.
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2. Makroskopsko kvantno tuneliranje

Velika ovira za opazovanje kvantnih pojavov pa je lahko interna disipacija
v makroskopskem sistemu in prav tej temi je Leggett posvetil veliko pozor-
nosti. S sodelavcem Caldeiro sta iznašla fenomenološki model za kvantne
disipativne sisteme ter pokazala, kako disipacija vpliva na razpadni čas za
pobeg sistema iz metastabilnega minimuma potencialne energije. Deko-
herenco je mogoče povezati z disipacijo (�trenjem�, �upornostjo�), ki je
merljiva v klasičnem režimu delovanja naprave.

Leggett je predlagal, da bi lahko tovrstne makroskopske kvantne pojave
opazovali v superprevodnih napravah z Josephsonovim spojem [5]. Skozi
Josephsonov spoj teče električni tok, če se faza parametrov reda na obeh
superprevodnih kontaktih razlikuje, kar opisuje prva Josephsonova zveza

I(t) = Ic sinϕ(t). (3)

Ic se imenuje kritični tok in je specifična lastnost danega spoja. Fazna razlika
ϕ je makroskopska spremenljivka, saj opisuje kolektivno stanje ogromnega
števila elektronov, ki združeni v Cooperjeve pare tvorijo superprevodni kon-
denzat. Skozi Josephsonov spoj lahko teče superprevodni tok (supertok)
brez potencialnega padca, če je tok manǰsi od kritičnega. Potencialna ener-
gija spoja je periodična funkcija spremenljivke ϕ, zunanji tok pa prispeva
dodatni linearni člen. Vsota obeh prispevkov ima obliko nagnjenega peri-
odičnega potenciala (slika 1). V tem potencialu se giblje ϕ kot nekakšna
kroglica. Če je tok manǰsi od kritičnega, ima potencial lokalne minimume,
ki ustrezajo supertoku brez napetosti (slika 1a). Če pa je tok večji od
kritičnega, je naklon potenciala tako velik, da lokalnih minimumov več ni,
kroglica se kotali, kar ustreza končni napetosti (slika 1b). To opisuje druga
Josephsonova zveza

U(t) =
Φ0

2π

dϕ(t)

dt
. (4)

U je napetost na spoju, Φ0 = h/2e pa kvant magnetnega pretoka. Če je
tok malenkost manǰsi od kritičnega, se zastavi vprašanje, kako dolgo bo
�kroglica� ostala v minimumu, saj lahko iz pasti pobegne zaradi termič-
nih fluktuacij, ki ji dajo dovolj energije za pobeg iz plitvine. Z nižanjem
temperature verjetnost za ta proces postane eksponentno majhna. Če pa
je disipacija v sistemu dovolj nizka, lahko kroglica iz minimuma pobegne
tudi s kvantnim tuneliranjem skozi energijsko pregrado. Letošnji Nobe-
lovi nagrajenci so to napoved eksperimentalno preverili. Pojav je znan kot
makroskopsko kvantno tuneliranje (angl. macroscopic quantum tunneling,
MQT).
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Slika 1. Nagnjeni periodični potencial Josephsonovega spoja v prisotnosti končnega ele-
ktričnega toka. a) Primer, ko je tok nižji od kritičnega: makroskopska spremenljivka je
ujeta v potencialni minimum, tok teče brez upora, na spoju ni napetosti. b) Primer, ko
je tok vǐsji od kritičnega: makroskopska spremenljivka se s časom spreminja, na spoju se
pojavi končna napetost. c) Klasična spremenljivka lahko zavzame poljubno energijo. d)
V kvantnem režimu so nivoji kvantizirani, sistem pa lahko iz energijske pregrade pobegne
s tuneliranjem. vir: ©The Royal Swedish Academy of Sciences

3. Superprevodna elektronska vezja

Superprevodniki lahko prevajajo električni tok brez upornosti, zato jih lahko
v prvem približku opǐsemo z analogijo s konservativnim mehanskim siste-
mom. Vezje razdelimo na elemente, ki povezujejo vozlǐsča (stičǐsča med
elementi). Vsakemu elementu lahko pripǐsemo napetost in tok, ki sta dobro
definirana z integraloma po električnem in magnetnem polju:

vb(t) =
∫ konec veje b
začetek veje bE(r, t) · dr, (5)

ib(t) = 1
µ0

∮
okoli veje bB(r, t) · dr. (6)

(7)

Z indeksom b oštevilčimo različne veje vezja. Integracijske poti potekajo
zunaj materiala. Izkaže se, da je lažje kot s tokovi računati z integriranimi
količinami po času (posplošenimi naboji), zato vpeljemo pretok in naboj

ϕb(t) =
∫ t
−∞ vb(t

′) dt′, (8)

qb(t) =
∫ t
−∞ ib(t

′) dt′. (9)

Za kondenzator, ki ga v ravninski superprevodni napravi izdelamo kot med
seboj prepletene elektrode v obliki prstov (angl. interdigitated capacitor),
je naboj q dejansko razlika nabojev med kontaktoma. Za običajno tuljavo bi
bil pretok ϕ dejansko magnetni pretok skozi ovoje žice, v superprevodnem
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induktorju, ki ga v ravnini izdelamo kot vijugasto žico (angl. meandering
inductor), pa je polje sicer bolj zapleteno, vendar gre za podobno idejo. Za
elemente obeh tipov potem izračunamo pripadajočo energijo kot integral po
času

Eb(t) =
∫ t

−∞
vb(t

′) ib(t
′) dt′. (10)

Sistem opǐsemo v Lagrangevem formalizmu, zato vse količine izrazimo s
pretoki. Kondenzatorji dajo sistemu inercijo, torej kapaciteta C igra vlogo
mase, induktorji pa so analogni vzmetem s konstantno vzmeti k ∝ 1/L.
Energiji se zapǐseta

Ekin = Cϕ̇2

2 , (11)

Epot = ϕ2

2L . (12)

Naslednji korak je določitev nabora med seboj neodvisnih prostostnih sto-
penj, pri čemer si pomagamo s Kirchhoffovima izrekoma o tokovnem vozlǐsču
in tokovni zanki, ki opredeljujeta vezi in s tem redundantne spremenljivke.
Sistematičen način se imenuje metoda vpetega drevesa (angl. spanning
tree): vezje si predstavljamo kot usmerjen graf (usmerjenost je potrebna,
da dobimo pravilne predznake) in izberemo drevo brez zank iz samih kon-
denzatorjev, z začetno točko denimo pri masi. Po kratkem premisleku ugo-
tovimo, da lahko stanje vezja popolnoma opredelimo, če podamo vrednosti
vozlǐsčnih pretokov ϕn v vseh vozlǐsčih vpetega drevesa, pri čemer so pre-
toki skozi elemente definirani kot razlike vozlǐsčnih pretokov ob upoštevanju
usmerjenosti grafa [21]. Možnih izbir drevesa je lahko v velikih vezjih več; v
bistvu gre za izbiro umeritve (angl. gauge choice). Ko zapǐsemo Lagrangevo

funkcijo L = Ekin(ϕ̇, ϕ) − Epot(ϕ) z vozlǐsčnimi pretoki, lahko določimo še

konjugirane posplošene momente z odvajanjem L po ϕ̇n, kar uvedemo kot
vozlǐsčne naboje qn. S temi spremenljivkami nato iz Lagrangeve funkcije
določimo pripadajočo Hamiltonovo, H(q, ϕ) = Ekin(q, ϕ) + Epot(ϕ). Tedaj
je vse pripravljeno za kanonično kvantizacijo. Naboje qn in ϕn proglasimo
za operatorje s komutacijsko zvezo [ϕ̂m, q̂n] = iℏδmn. Stanje vezja potem
povsem opǐsemo z valovno funkcijo Φ(ϕ), pri čemer so seveda možna stanja
tudi superpozicije, kjer makroskopsko veliki električni tokovi tečejo �hkrati�
v nasprotnih smereh po različnih vejah vezja.

Najbolj preprosto vezje je nihajni krog iz kondenzatorja in tuljave. Ključni
količini sta lastna frekvenca ω0 = 1/

√
LC in impedanca Z0 =

√
L/C. Ti-

pične frekvence superprevodnih resonatorjev so v mikrovalovnem območju
(nekaj GHz), impedanco pa običajno izberemo okoli 50 Ω za učinkovito
sklapljanje z valovodi in koaksialnimi kabli. Ker operatorja pretoka in na-
boja ne komutirata, pretok in naboj fluktuirata tudi v osnovnem stanju,
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in sicer velja ϕZPF =
√

ℏZ0/2 in qZPF =
√

ℏ/2Z0 (okraǰsava ZPF iz angl.
zero-point fluctuations). Za občutek, vrednosti teh količin za tipične super-
prevodne mikrovalovne resonatorje v kvantnih vezjih so velikostnega reda
nekaj stotink kvanta pretoka Φ0 in 10 osnovnih nabojev.

Opis disipacije v kvantnih sistemih je bolj zapleten. Izgube so odvisne
od frekvence, kar opǐsemo z realnim delom frekvenčno odvisne impedance
Z(ω). Caldeira in Leggett sta pokazala, da lahko poljubno impedanco Z(ω)
predstavimo kot neskončno množico harmonskih oscilatorjev, ki predstav-
ljajo notranja stanja okolice in ki se s sistemom sklapljajo linearno [1, 17].
Izkaže se, da so najpomembneǰsi načini iz okolice tisti pri lastni frekvenci
sistema. Kvantni pojavi v Josephsonovih vezjih bodo torej opazni, če nam
uspe zmanǰsati izgube v mikrovalovnem področju.

4. Razpadni čas

Efektivni potencial Josephsonovega spoja v prisotnosti toka je

U(ϕ) = −IcΦ0

2π

(
cosϕ+

I

Ic
ϕ

)
. (13)

Frekvenca nihanja na dnu potencialne jame se imenuje plazemska frekvenca
(saj gre dejansko za nihanje električno nabitega kondenzata glede na statično
pozitivno nabito ozadje) in se zapǐse

ωp =

√
2πIc
Φ0C

[
1−

(
I

Ic

)2
]1/4

. (14)

Vǐsina pregrade pa je

∆U =
2
√
2IcΦ0

3π

(
1− I

Ic

)3/2

. (15)

Tako tok I kot kritični tok Ic lahko spreminjamo: I neposredno na tokovnem
izvoru, Ic pa z zunanjim magnetnim poljem, ki oslabi superprevodnost in s
tem zniža velikost kritičnega toka. Če je I malenkost manǰsi od Ic, lahko
potencial dobro opǐsemo z vsoto kvadratnega in kubičnega člena:

U(ϕ) ≈ Aϕ2 −Bϕ3. (16)

Teoretični problem, ki ga tu rešujemo, je torej pobeg iz metastabilnega
minimuma tega potenciala. V klasičnem režimu, kBT ≫ ℏωp, je ta problem
rešil Kramers leta 1940 [16]. Za pogostost pobega velja izraz

Γt(T ) = at
ωp

2π
exp

(
− ∆U

kBT

)
, (17)
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kjer je at = 4/

(√
1 + QkBT

1.8∆U + 1

)2

konstanta reda 1. Q = ωpRC je faktor

kakovosti nihajnega kroga, kjer je R vzporedna upornost vezja.
V kvantnem režimu, kBT ≪ ℏωp, sta nalogo prva rešila Ivanchenko in

Zilberman leta 1968 za primer brez disipacije [2], polni problem pa pozneje
Caldeira in Leggett [1, 17]. Za razpadno frekvenco sta dobila

Γq(0) = aq
ωp

2π
exp

[
−7.2

∆U

ℏωp

(
1 +

0.87

Q

)]
(18)

kjer je aq =
[
120π 7.2∆U

ℏωp

]1/2
, izraz pa velja za temperaturo nič. Pomembna

ugotovitev je, da disipacija eksponentno zmanǰsa pogostost pobegov s tune-
liranjem, za razliko od termičnih pobegov, kjer Q ne nastopa v eksponentu
in zgolj šibko vpliva na predfaktor v izrazu. Pozneje je bil problem rešen
tudi za končne temperature, kar daje pravilen opis zveznega prehoda med
kvantno limito in klasičnim režimom [18, 20, 3].

5. Eksperimentalna potrditev

Prvi poskusi eksperimentalne potrditve obstoja makroskopskega kvantnega
tuneliranja (MQT) so bili opravljeni v več skupinah že v začetku 80. let
[4]. Dejansko so opazili, da z nižanjem temperature pogostost preklopa v
stanje s končno napetostjo ne pada proti nič, temveč kaže znake zasiče-
nja pri neki končni vrednosti. Težava teh prvih eksperimentov je bila, da
niso bili prepričljivi, saj bi do zasičenja lahko prǐslo tudi zaradi zunanjih
motenj iz okolice, recimo zaradi elektromagnetnega šuma, ki bi pri nizkih
temperaturah lahko prevladal nad notranjimi termičnimi fluktuacijami. To
predstavlja dvojni eksperimentalni izziv: po eni strani je treba poskrbeti
za izjemno dobro preprečevanje vdora neželenih elektromagnetnih motenj
do merjenca. Po drugi strani pa je potrebno dobro poznati vse parame-
tre sistema, da je mogoče zanesljivo kvantitativno napovedati, kako se bo
manifestiralo kvantno tuneliranje. Pri slednjem je pomembno, da se karak-
terizacija merjenca opravi v klasičnem režimu, v katerem so vsi parametri
povsem jasno definirani.

Nagrajencem je uspelo oboje. Iznašli so rešitev za izjemno učinkovito
odpravljanje mikrovalovnih šumov z uporabo filtrov s prahom iz drobnih
bakrenih zrn v dielektričnem mediju. (V resnici je šlo za ponoven izum,
saj je to rešitev že pred tem uporabljala vojska kot zaščito pred jedrskimi
orožji za ustvarjanje elektromagnetnih pulzov, vendar je v 80. letih to bila
še tajnost.) Prav tako so napravi dodali možnost nadzorovanega obsevanja
z mikrovalovnim valovanjem, kar jim je omogočilo in situ karakterizacijo.
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Slika 2. Ubežna temperatura Tesc v odvisnosti od temperature naprave T . Temni in svetli
simboli so izmerjene vrednosti za dve nastavitvi, ki se razlikujeta po temperaturi prehoda
iz klasičnega v kvantni režim (temperaturi sta označeni s puščicama na horizontalni osi).
Oznaka MQT na vertikalni osi predstavlja pričakovano vrednost pri temperaturi nič.

Določili so lahko lastno frekvenco vezja in dovolj dobro ocenili faktor kako-
vosti Q pri visokih temperaturah [6], kjer je klasični opis povsem ustrezen,
zato so točno vedeli, kako se mora sistem obnašati pri nizkih temperaturah,
če pojav MQT zares obstaja. V okviru merskih napak je bil rezultat dokon-
čen: makroskopsko veliko Josephsonovo vezje, opisano s spremenljivko ϕ, pri
nizkih temperaturah iz potencialne jame pobegne s kvantnim tuneliranjem
[8].

Za lažjo ponazoritev so pogostost pobega izrazili z ekvivalentno �ubežno
temperaturo� (angl. escape temperature) Tesc, definirano preko zveze

Γ =
ωp

2π
exp

(
− ∆U

kBTesc

)
. (19)

Pri visokih temperaturah je Tesc sorazmerna s temperaturo, pri nizkih tem-
peraturah pa se padanje ustavi in Tesc se ustali pri končni vrednosti, glej
sliko 2. Kvantitativno pravilno je bil opisan tudi vpliv disipacije, kar je
potrdilo adekvatnost fenomenološkega pristopa, ki sta ga vpeljala Caldeira
in Leggett.

Poleg MQT je trojica zaznala še en značilen kvantni pojav, in sicer
kvantizacijo nivojev [7]. Z ustrezno nastavitvijo parametrov so dosegli, da
je bila potencialna jama ravno zadosti globoka, da je bilo v njej poleg osnov-
nega stanja še nekaj nivojev (trije ali štirje). Nato so napravo vzbujali z
mikrovalovnim valovanjem. Če je frekvenca, pomnožena s Planckovo kon-
stanto, ustrezala energijski razliki dveh nivojev, je verjetnost za pobeg iz
jame narastla, saj je vǐsina pregrade za vzbujena stanja efektivno nižja, kar
so eksperimentalno jasno zaznali. Pri končni temperaturi so termično zase-
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Slika 3. Ojačitve verjetnosti za pobeg v odvisnosti od frekvence obsevanja Josephsonovega
spoja z mikrovalovnim valovanjem. Ojačitve ustrezajo energijam prehodov med sosednjimi
nivoji v potencialni jami (na spodnji sliki so izračunane vrednosti).

dena tudi vzbujena stanja, zato so lahko prehode vzbujali za poljubne pare
nivojev. Najbolj razvidni prehodi so bili med stanji 0 in 1, 1 in 2, 2 in 3,
pri čemer so se energijske razlike zelo dobro ujemale z napovedmi za lastna
stanja kubičnega potenciala, glej sliko 3.

6. Kasneǰsi razvoj

Ti pionirski eksperimenti so pokazali, da lahko na nadzorovan način izde-
lamo elektronska vezja z izbrano funkcionalnostjo in proučujemo njihovo
obnašanje v kvantnem režimu. Naslednji očitni korak je bila demonstracija
makroskopske kvantne koherence (angl. macroscopic quantum coherence,
MQC), torej koherentne superpozicije dveh makroskopskih stanj, kar je ana-
logija živo-mrtvi Schrödingerjevi mački. Prikaz MQC je bistveno težji kot
prikaz MQT, ker mora biti sistem koherenten dalǰsi čas (ne zgolj ob tuneli-
ranju skozi pregrado), zato je bilo potrebno še več kot desetletje dodatnega
razvoja eksperimentalnih tehnik. Dodatno vzpodbudo področju je dal Sho-
rov izum kvantnega algoritma za faktorizacijo celih števil na prafaktorje [9],
ki omogoča eksponentno pohitritev glede na znane klasične algoritme, kar
ima kritične implikacije za kriptografijo. Prve zanesljivo delujoče kvantne
bite (kubite) iz superprevodnih vezij je uspelo izdelati ob prelomu stoletja,
denimo nabojske kubite (angl. Cooper-pair box) v skupini Y. Nakamure v
podjetju NEC [10], s katerimi so demonstrirali Rabijeve oscilacije in Ram-
seyeve interferenčne franže v dvonivojskem sistemu. Stanji |0⟩ in |1⟩ sta
ustrezali stanjema, ki sta se razlikovala za en dodatni Cooperjev par na su-
perprevodnem otočku. Malo za tem so se pojavili še kubiti na pretok (angl.
flux qubit), kjer stanja ustrezajo različno usmerjenim trajnim tokovom v
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superprevodnem obročku, skozi katerega je vzpostavljen magnetni pretok
Φ0/2, ter fazni kubiti, ki so pravzaprav podobni postavitvi eksperimenta iz
leta 1985 z Josephsonovim spojem pri končnem toku [11].

Pomemben preboj je bila iznajdba �kvantne elektrodinamike v vezju�
(angl. circuit quantum electrodynamics, cQED), ki je superprevodni ek-
vivalent kvantne elektrodinamike v optičnih votlinah (angl. cavity QED),
v katerih igrajo vlogo (Rydbergovih) atomov Josephsonovi spoji (kubiti),
vlogo votlin pa mikrovalovni resonatorji [13, 14]. V superprevodnih na-
pravah lahko dosežemo tudi režim �ultramočne� sklopitve, ki v optičnih
votlinah ni dosegljiv [12].

Velik tehnični dosežek je tudi nedavna demonstracija kršitve Bellove
neenačbe v sistemu dveh superprevodnih kubitov, ki sta bila povezana s
30 metrov dolgim valovodom, ki je bil v celoti ohlajen do temperatur v
področju mK. Uspelo jim je odpraviti vse vrzeli (angl. loophole-free Bell
test) in zanesljivo potrditi nevzdržnost predpostavke lokalnega realizma tudi
v sistemu z makroskopskimi kvantnimi stanji [15].

7. Zaključek

Letošnji Nobelovi nagrajenci za fiziko so bili nagrajeni za prvo prepričljivo
demonstracijo kvantnega obnašanja ene makroskopske spremenljivke. To
jim je uspelo s popolno karakterizacijo vezja in situ, tako da so natančno
poznali vse parametre v modelskem opisu in so lahko nedvoumno napove-
dali pričakovane rezultate v nizkotemperaturnem kvantnem območju. Te so
dejansko tudi izmerili v okviru ocenjenih merskih napak. Opravili so več
eksperimentov na Josephsonovih vezjih, pri čemer je komisija izpostavila
dva: demonstracijo makroskopskega kvantnega tuneliranja in kvantizacijo
nivojev v potencialni pregradi. S tem so odprli novo področje raziskav,
ki se je nadaljevalo s številnimi drugimi prikazi osnovnih kvantnih pojavov
na makroskopski skali, kot sta superpozicija stanj makroskopskega sistema
ter kvantna prepletenost dveh oddaljenih makroskopskih sistemov. Super-
prevodna vezja so danes tudi pomembna platforma za izdelavo kvantnih
računalnikov, mikrovalovnih ojačevalcev, ki imajo najnižji možni šum, ki
ga še dopušča Heisenbergovo načelo nedoločenosti (angl. quantum limited
amplifier), ter detektorjev za posamične optične in mikrovalovne fotone.
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NOVE KNJIGE

Tomaž Zwitter: Zvezde, osončja in njihovo opazovanje (Založba UL FMF,
2025)

Bliža se prva obletnica izdaje knjige prof. dr.
Tomaža Zwittra z naslovom �Zvezde, osončja in
njihovo opazovanje�. Tiste, ki knjige še niste pri-
jeli v roke, toplo vabim na prijetno zimsko bra-
nje! Matematiki in fiziki smo tako mahnjeni na
tujo literaturo, da nam biseri izpod domačih gora
marsikdaj uidejo; naj se to ne zgodi tudi s Zwit-
trovo knjigo! Gre za pester in modern pregled
osnov astronomije – od zgodovinskih začetkov,
preko optičnih pripomočkov za opazovanje neba
in nebesne orientacije, do razprave osnovnih la-
stnosti Sonca, Osončja, zvezd ter planetnih sis-
temov izven Osončja. Človek bi na prvo žogo
seveda pomislil, da je tovrstnih knjig mnogo in da utegne kakšna tuja, že
uveljavljena knjiga služiti kot bolǰsa referenca, toda s tovrstnim refleksom
se nikakor ne bi strinjal. Če poznate Tomaža Zwittra bodisi kot sodelavca
bodisi kot profesorja (ali celo mentorja) bodisi kot prijazen obraz s TV za-
slonov, se boste z brskanjem po knjigi počutili, kot bi stal pred vami! Snov
je v Zwittrovem značilnem slogu podana jasno, pestro ter z zdravim od-
merkom hudomušnosti! Naj vam navedem primer direktno iz knjige: “Med
projekti, ki so vzbudili močno nasprotovanje, med drugim s protestno izjavo
Mednarodne astronomske zveze in z vrsto nastopov na letnem evropskem
astronomskem kongresu leta 2019 v Lyonu, je Starlink firme SpaceX lastnika
Elona Muska ... Nevarnosti takega obširnega prisvajanja vesolja so tri: prvič
so ti relativno veliki sateliti vidni s prostimi očmi in predstavljajo motnjo pri
opazovanju nočnega neba, danosti, ki je tisočletja predstavljala vir užitka
in zvedavosti mnogih generacij. Drugič bodo ti povsod prisotni sateliti z
močnimi radijskimi oddajniki komunicirali z uporabniki na Zemlji, to pa bo
zelo verjetno pomenilo oviro za opazovanje vesolja z radijskimi teleskopi. Če
se bodo ponovile slabe izkušnje s sateliti Iridium, torej v prihodnosti ne bo
slik črnih lukenj in podobnih odmevnih dosežkov. Na koncu me resno skrbi,
kaj bo s sateliti, ki se bodo pokvarili. Zagotavljajo sicer, da naj bi jih vsaj
90 % uničili s potopitvijo v Zemljino atmosfero, a vprašanje ostaja, kaj bo
s tisoči neuničenih. Bomo poročali o dnevnih trkih satelitskega drobirja?”
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Ali ni čudovito imeti domačo knjigo, ki si drzne lotiti znanosti na družbeno-
političnem nivoju in ne zgolj na akademskem? Zwitter nas uči in tudi vzgaja:
astronomija kot veda nas združuje, saj ǐsče odgovore na vprašanja, ki si jih
od pamtiveka zastavljamo; zato ni dovolj, da uživamo v dognanjih naših
kolegov znotraj in zunaj meja naše države, moramo tudi prevzeti odgovor-
nost ter se boriti za dostop do opazovalnega dela astronomije za bodoče
generacije.

Knjiga je predvsem namenjena študentom dodiplomskega študija fizike
in astronomije na FMF. Kot Zwitter pravi, je namen besedila “slalom skozi
gozd poimenovanj in astronomskega žargona”. Nekaj srednješolskega pred-
znanja fizike in matematike je resda potrebno, ampak to je v veliki meri
tudi zagotovljeno, še posebej med našimi študenti. Tudi naključni bralec
zunaj znanstvene srenje se lahko marsičesa nauči, saj se Zwitter vidno trudi
uporabljati jasen, dostopen in bralcu prijazen nagovor. Osebno si štejem v
čast, da so me izbrali za recenzenta Zwittrovega dela, saj sem se tudi sam
veliko naučil. Sem se pa tudi neznansko zabaval, saj se mi vsak prebran
stavek zazdi, kot bi bil pobran direktno z ustnic zdaj že rahlo osivelega,
prijaznega astronomskega skuštranca, ki ga pozna bržkone cela Slovenija.

Ko se astronomi pogovarjamo, je to redko kdaj slovenščina; bolj spake-
dranščina. Pogosto nas boste slǐsali diskutirati v stilu “si videl, da so včeraj
objavili katalog Gajinih zvezd, kjer so jih našli cel kup med main-sequence
turn-offom in RGB-jem, torej v Hertzsprung gapu?”. Zavedam se, da smo
fiziki in matematiki v splošnem dovzetni za tako mešanje strokovnih jezi-
kov. To pa je še ena značilnost Zwittrove knjige: uporabljeno ter vpeljano
izrazoslovje je domače, kvalitetno prevedeno in povsem primerno. Zwitter
bi torej rekel: “... kjer so jih našli cel kup med kolenom glavne veje in dnom
veje orjakinj, torej v Hertzsprungovi vrzeli?” To je seveda neizogibno, če si
poročen s slavistko, ki ti diha za vrat vsakič, ko se v govoru spotakneš na
nepotrebno tujko. Zahvala torej gre tudi Savini Zwitter.

Vsekakor pa je knjiga izjemno bogata akademskih biserov, ki jih težko
najdemo drugod. Na primer, pri obravnavi črnih lukenj nas Zwitter spomni,
”da je zlivanje črnih lukenj med prvimi proučeval prof. dr. Andrej Čadež, ki
je prvi tudi izračunal, kako se ob tem združita horizonta obeh črnih lukenj”.
Kaj takega težko zasledimo v tuji literaturi, kar bi – preprosto rečeno – bilo
škoda.

Zato iskreno svetujem, da primete Zwittrovo knjigo v roke in pobrskate
po njej. Zimski dnevi so kratki, noči vam pa lahko knjiga še kako popestri,
tudi če ste že totalni stručkoti za zvezde med main-sequence turn-offom in
RGBjem.

Andrej Prša
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Poročilo o 79. Občnem zboru DMFA Slovenije

Redni, že 79. občni zbor DMFA Slovenije, je potekal v četrtek, 6. marca
2025, na Fakulteti za matematiko in fiziko v Ljubljani. Prisotne je naj-
prej pozdravila predsednica društva Mojca Vilfan, tradicionalno čakanje na
sklepčnost pa je obogatilo vabljeno predavanje Leva Vidmarja, prejemnika
Zoisovega priznanja 2024 za odkritje novih vzorcev obnašanja večdelnih
kvantnih sistemov.

Slika 1. Lev Vidmar med predavanjem Kvantna fizika nekoč in danes: od enega do mnogo
delcev.

Po potrditvi dnevnega reda in delovnega predsedstva smo se z minuto
molka poklonili članom društva, ki so nas zapustili v zadnjem obdobju, med
njimi dr. Zvonku Trontlju, dr. Gabrijelu Kernelu, prof. dr. Rudolfu Pod-
gorniku, Francetu Pernetu, Jelisavi Sakeľsek, Tomažu Skulju in dr. Bogdanu
Povhu.

Predsednica dr. Mojca Vilfan je nato podala pregled dela v zadnjem
obdobju: uspešno organizacijo državnih tekmovanj (19 tekmovanj, več kot
100.000 udeležencev in ok. 7000 mentorjev), odlične dosežke mladih na med-
narodnih olimpijadah (3 zlate, 6 srebrnih, 4 bronaste medalje v letu 2024
ter drugo zaporedno absolutno 1. mesto Petra Andoľska), kontinuirano za-
ložnǐsko dejavnost (Presek, Obzornik, zborniki, spletna trgovina), delo stro-
kovnih odborov v mednarodnih združenjih (IMU, EMS, EPS, IUPAP, IAU,
EWP, EWM) ter uspehe posameznikov (Gregor Dolinar kot predsednik IMO
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2024–2028, Andrej Guštin kot častni član IAU, Erdősova nagrada Matjažu
Željku). Izpostavila je tudi organizacijo seminarjev in srečanj, vzpostavitev
štipendijskega sklada, pridobitev statusa RO pri ARIS ter številne aktiv-
nosti za promocijo znanosti in skrb za Plemljevo vilo. Med cilji za leto
2025 je poudarila zaključek cikla državnih tekmovanj, priprave in udeležbo
ekip na MMO, MFO, MEO, MOAA, EDMO, MEMO in EFO ter nadaljnje
delovanje odborov, založnǐstvo, štipendiranje, organizacijo izobraževanj in
iskanje sponzorjev. Prisotni so po kraǰsi razpravi potrdili letno poročilo in
finančni načrt. Sledila je predstavitev predlaganih sprememb statuta (Ciril
Dominko): med cilje se dodata štipendiranje in skrb za Plemljevo dedǐsčino,
Upravni odbor pa se zmanǰsa s 17 na 7 članov za večjo učinkovitost. Po
razpravi je bil statut sprejet; veljati začne s potrditvijo na Upravni enoti,
prve volitve po novem pa bodo leta 2026.

V slavnostnem delu sta bili podeljeni dve novi društveni priznanji: mag.
Tatjani Štorman in Vincencu Petruni. Za častna člana sta bila izvoljena dr.
Marko Razpet in dr. Dragana Mihailović1.

Občni zbor je delovni predsednik Boštjan Kuzman sklenil s kraǰso raz-
pravo pri točki razno: potrdili smo vključitev DMFA v IMO, podprli uvedbo
nagrade Ivana Vidava za doktorska dela iz matematike in se seznanili s pro-
jektom digitalizacije arhiva Obzornika (A. Jurǐsić). Poslovili smo se tudi od
dolgoletne računovodkinje Simone Puncer Klemenčič. Po odmoru je sledila
še Slavnostna akademija ob 75-letnici DMFA Slovenije; več v posebni novici.

Boštjan Kuzman

Slavnostna akademija in podelitev Plemljevih kovancev ob 75-letnici
DMFA Slovenije

Društvo DMFA Slovenije je bilo ustanovljeno v Ljubljani 30. oktobra 1949.
Z rahlo zamudo smo 75 let svojega delovanja obeležili s posebnim slavno-
stnim dogodkom, na katerega so bili poleg članov povabljeni tudi predstav-
niki Ministrstva za vzgojo in izobraževanje in še nekaterih ustanov, ki nas
redno podpirajo pri našem delu. Slavnostna akademija je tako potekala 6.
marca 2025, takoj po zaključku rednega Občnega zbora društva. Akademijo
je otvorila predsednica Mojca Vilfan, ki je pozdravila posebne goste vključno
s predstavniki fakultet, predstavnico MVI in predstavnikom ZOTKS, z uvo-
dno glasbeno točko pa nas je v prijetno vzdušje odpeljala strokovnjakinja
za teorijo strun, harfistka Bilka Peršič. V nadaljevanju sem podpisani Bo-
štjan Kuzman ob prosojnicah z zgodovinskimi dokumenti predstavil številne

1Dalǰsi utemeljitvi sta bili objavljeni v 2. številki tega letnika OMF.
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mejnike in utrinke iz bogate društvene dedǐsčine, od ustanovitve v času Ju-
goslavije po drugi svetovni vojni do slovenske osamosvojitve in aktivnega
prispevka k razvoju in popularizaciji znanosti v samostojni Sloveniji od leta
1991 do danes.

Slika 2. Predstavitev izjemno bogate zgodovine društva

V prvem delu smo se tako spomnili okolǐsčin ustanovitve društva v Lju-
bljani ter prvega kongresa jugoslovanskih matematikov in fizikov na Bledu
(1949), številnih podružnic in društvenih sekcij za predavanja in dvig po-
uka, za terminologijo in za bibliografijo (1950), prvih izvodov revij Obzornik
(1951) in Presek (1972), otvoritve kipa Jurija Vege v Zagorici (1954), pr-
vega seminarja za učitelje fizike (1961), prvih društvenih priznanj za učitelje
(1967), praznovanj društvenih obletnic (1959, 1969, 1979), prvih tekmovanj
iz matematike (1951) in fizike (1964), prve udeležbe na mednarodni olim-
pijadi iz matematike (1963), akademije ob 150-letnici rojstva Franca Moč-
nika (1964), prvih Vegovih priznanj za osnovnošolce (1971), mednarodnega
kongresa ob 100. obletnici rojstva Josipa Plemlja (1973) in prvega znan-
stvenega simpozija iz uporabne fizike (1975), otvoritve Plemljeve spominske
sobe (1977), številnih razprav o maturi in problemih pouka z učitelji na obč-
nih zborih (1962, 1978, 1987), organizacije Mednarodne olimpijade iz fizike
v Portorožu (1985) in nikoli izvedenega velikega jugoslovanskega kongresa
v Ljubljani (1990).

Drugi del je predstavil delovanje društva v obdobju samostojne Slove-
nije. Slovenska vlada je razglasila Plemljevo leto (1992) in društvo se je kot
predstavnik Slovenije vključilo v mednarodne organizacije EMS, IMU, EPS
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in IUPAP (1992), prvič v imenu Slovenije poslalo tekmovalce na olimpijadi
iz matematike in fizike (1993) ter organiziralo svoj prvi (in zaenkrat edini)
kongres (1994). V Plemljevi vili že od 1980-tih let potekajo razne priprave
in poletne šole, slovenski tekmovalci pa so osvajali vedno vǐsja odličja in
zdaj že tudi prve zlate medalje na olimpijadah iz fizike (2002), astronomije
(2017), matematike (2021) in ekonomije (2023). Uspešno smo informatizi-
rali domača in organizirali Mednarodno matematično (2006) in Evropsko
fizikalno olimpijado (2022) v Ljubljani ter Evropsko deklǐsko olimpijado v
Portorožu (2023). Obeležili smo mednarodno leto matematike (2000), fizike
(2005) in astronomije (2009) ter jubileje Močnika (2014) in Plemlja (2023),
soorganizirali Evropski matematični kongres (2021), se vključili v Mednaro-
dno astronomsko unijo (2018), praznovali 70-letnico s prireditvijo Bistroumi
v Cankarjevem domu in sprejemom pri predsedniku države (2019), ter kot
vsa leta obstoja izvajali obilo strokovnih, založnǐskih in popularizacijskih
dejavnosti.

Slika 3. Podeljevanje Plemljevih kovancev

Čestitko in zahvalo ob tako bogatem dolgoletnem delovanju društva je
prisotnim ob zaključku izrekla ga. Janja Zupančič predstavnica Ministr-
stva za vzgojo in izobraževanje, ki je nato skupaj s predsednico društva
Mojco Vilfan podelila priložnostne zahvale in 50 Plemljevih kovancev za
tiste posameznike in ustanove, ki so v zadnjih 10 letih v veliki meri prispe-
vali k delovanju društva. Prejeli so jih: Peter Legǐsa, Sašo Strle, Matjaž
Željko, Janez Krušič, Primož Potočnik, Matej Brešar, Neža Mramor Kosta,
Dragan Mihailović, Barbara Rovšek, Andrej Guštin, Andreja Gomboc, Du-
nja Fabjan, Klemen Šivic, Gregor Dolinar, Lucijana Kračun Berc, Sandra
Cigula, Lovro Dretnik, Nik Stopar, Jurij Bajc, Nada Razpet, Izidor Haf-
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ner, Aleš Mohorič, Ciril Dominko, Boštjan Kuzman, David Gajser, Nejc
Zajc, Aleš Toman, Tomaž Košir, Damjana Kokol Bukovšek, Cvetka Gom-
boc Alt, Aljoša Brlogar, Luka Horjak, Vid Kavčič, Klavdija Mlinšek Cof,
Lucija Željko, Martin Klanǰsek, Peter Jeglič, Simon Čopar, Sergej Faletič,
Mihael Gojkošek, Darjo Felda, Saša Dolenc, Marjeta Kramar Fijavž, Jasna
Prezelj, ter ustanove Fakulteta za matematiko in fiziko UL, Fakulteta za
naravoslovje in matematiko UM, Pedagoška fakulteta UL, Univerza v Novi
Gorici in Univerza na Primorskem, en kovanec pa je ostal simbolično nepo-
deljen za vse tiste, ki so prav tako veliko prispevali, a smo njihov prispevek
morda pozabili omeniti.

Slika 4. Prejemniki Plemljevih kovancev in drugi gostje

Boštjan Kuzman

Spremembe statuta DMFA Slovenije

Člani in članice društva DMFA Slovenije so na Izrednem občnem zboru 2.
oktobra 2025 sprejeli nov statut društva. Izredni Občni zbor je bil sklican
zaradi nujnih uskladitev statuta z zahtevami Ministrstva za vzgojo in izo-
braževanje in Upravne enote Ljubljana, ki je novi statut 23. oktobra 2025
tudi potrdila. Člane in članice vabimo, da se seznanijo s spremembami sta-
tuta, ki je v celoti dosegljiv na spletni strani društva. Najpomembneǰsa
sprememba je zmanǰsanje Upravnega odbora iz dosedanjih 17 na 7 članov
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(člen 22), kar bo predvidoma omogočilo učinkoviteǰse delovanje. Prve voli-
tve po novem statutu bodo izvedene na Občnem zboru, ki bo predvidoma
potekal marca 2026. Druge spremembe statuta so še:

� V 5. členu se ločijo nameni in cilji Društva. Med cilje se poleg skrbi za
Plemljevo zapuščino doda cilj ohranjanja spomina na vidne slovenske
matematike, fizike in astronome.

� V 6. členu, ki definira dejavnosti, s katerimi Društvo dosega svoje cilje,
se na novo specificirajo nepridobitne in pridobitne dejavnosti. Prido-
bitne dejavnosti se klasificira na podlagi novih Standardnih klasifikacij
dejavnosti v Uradnem listu (SKD 2025).

� V 8. členu, ki definira častne člane, se besedo oseba spremeni v besedo
član.

� V 15. členu, ki definira občne zbore, se popravi, da lahko skliče redni
občni zbor le predsednik Društva.

� V 16. členu se dodatno definira, kako so člani Društva DMFA Slovenije
obveščeni o sklicu občnega zbora.

� V 23. členu, ki definira naloge upravnega odbora, se črta, da lahko
upravni odbor predstavlja Društvo pred javnostjo.

� V 26. členu, ki definira naloge podpredsednika Društva, se popravi, da
lahko podpredsednik začasno vodi Društvo samo po pisnem pooblastilu
predsednika, ne pa tudi upravnega odbora.

� V 47. členu se, na podlagi zaprosila Ministrstva za vzgojo in izobraže-
vanje, definira prenos premoženja Društva DMFA Slovenije v primeru
prenehanja delovanja, v primeru, da ima Društvo DMFA Slovenije sta-
tus nevladne organizacije v javnem interesu na področju vzgoje in izo-
braževanja.

Boštjan Kuzman

Tatjana Štorman in Vincenc Petruna prejemnika priznanj DMFA Slovenije

DMFA Slovenije že od leta 1968 podeljuje društvena priznanja priznanja z
namenom promocije uspešnega strokovnega in pedagoškega dela posamezni-
kov ali ustanov na področjih matematike, fizike in astronomije, predvsem
za uspešno delo z mladimi ali za strokovno dejavnost, ter posameznikom
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Slika 1. Prejemnika priznanj mag. Tatjana Štorman in Vincenc Petruna

ali ustanovam za uspešno sodelovanje z Društvom. Na 79. Občnem zboru
DMFA Slovenije 6. marca 2025 v Ljubljani je komisija za priznanja podelila
2 priznanji, ki sta ju prejela mag. Tatjana Štorman, profesorica matema-
tike na Gimnaziji Lava, Celje, za kvalitetno delo pri pouku matematike in za
sodelovanje pri organizaciji vrste mednarodnih matematičnih dogodkov, in
Vincenc Petruna, upokojeni profesor matematike in fizike na Gimnaziji in
SŠ Črnomelj, za izjemen življenjski prispevek k mentorstvu mladih talentov
in izobraževanju na področjih matematike in fizike v lokalnem okolju.

Mag. Tatjana Štorman je leta 2003 diplomirala in leta 2010 magistrirala
iz pedagoške matematike na FMF. Od leta 2003 poučuje matematiko na Gi-
mnaziji Lava v Celju. Po mnenju sodelavk in sodelavcev ima izjemen posluh
za delo z dijaki – zna se posvetiti tako nadarjenim v krožku kot tudi mate-
matično šibkeǰsim, svoj pouk pa popestri z didaktičnimi igrami in strokovno
učno literaturo. Z matematično natančnostjo in čustvenim pedagoškim pri-
stopom postavlja v aktivu nove standarde ter je cenjena zaradi strokovnosti
in zagnanosti. Že vrsto let sodeluje pri organizaciji matematičnih tekmovanj,
veliko pa je prispevala tudi k uspešni organizaciji Mednarodne matematične
olimpijade 2006, srečanja Mednarodni matematični kenguru 2011, Srednje-
evropske matematične olimpijade 2015 in Mednarodne deklǐske olimpijade
2023 v Sloveniji.

Vincenc Petruna je diplomiral iz pedagoške matematike na takratni FNT
v Ljubljani. Na Srednji šoli v Črnomlju je poučeval 40 let, vse do upoko-
jitve leta 2013. V bogati karieri je poleg matematike poučeval tudi fiziko,
informatiko in nekatere druge predmete. Vodil je številne krožke, med njimi
šahovski, fotografski, fizikalni, računalnǐski in astronomski krožek. Bil je
mentor številnim uspešnim tekmovalcem ter trinajstim raziskovalnim nalo-
gam v okviru Gibanja Znanost mladini in trem nalogam za Krkine nagrade.
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Tatjana Štorman in Vincenc Petruna prejemnika priznanj DMFA Slovenije

Slika 2. Podelitev priznanja na Občnem zboru DMFA Slovenije

V devetdesetih letih je kot član skupine za prenovo pouka fizike sodeloval
pri pisanju učbenikov ter prispeval programsko opremo za merilno-krmilni
vmesnik. Med prvimi v Sloveniji je uvedel spletne učilnice za interaktivno
delo z dijaki in vzpostavil odlično prakso dela z nadarjenimi pri pripravah na
državna tekmovanja. Svoje znanje je rad delil tudi sodelavcem in kolegom
zunaj šole. Kot pobudnik strokovnih aktivov učiteljev matematike in fizike
Bele krajine je na srečanjih redno predstavljal strokovne teme ter spodbujal
dodatne dejavnosti. Aktiven ostaja tudi v pokoju – na svojih spletnih stra-
neh še vedno objavlja pronicljive zapise o matematiki, fiziki, izobraževanju
ter hobijih, kot sta čebelarstvo in sadjarstvo.

Komisija za društvena priznanja se zahvaljuje vsem, ki so poslali pre-
dloge, in tudi v prihodnje vabi širše članstvo k predlaganju kandidatov in
kandidatk, ki s kvalitetnim pedagoškim in strokovnim delom izstopajo v
svojem okolju.

Boštjan Kuzman
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Na naslovnici: znamenita Dürerjeva ilustracija »Der Zeichner des liegenden We-
ibes« (1525), iz njegove knjige Underweysung der Messung. Podoba predstavlja
enega najprepoznavnejših zgodnjih prikazov renesančne linearne perspektive: ri-
sar sedi pred okvirjem z napeto mrežo, skozi katero opazuje ležeči model, s čimer
natančno določa zorne črte in razmerja. Ilustracija nazorno uteleša temeljne kon-
cepte perspektive – zorno točko, ravnino slike in geometrijsko konstrukcijo pogleda
– kar se neposredno navezuje na osrednje teme članka o zgodovinskem razvoju
perspektive in njenem prepletu z geometrijo.
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